	Centre Number	Candidate Number
Candidate Name		

CAMBRIDGE INTERNATIONAL EXAMINATIONS

Joint Examination for the School Certificate and General Certificate of Education Ordinary Level

CHEMISTRY 5070/4

PAPER 4 Alternative to Practical

OCTOBER/NOVEMBER SESSION 2002

1 hour

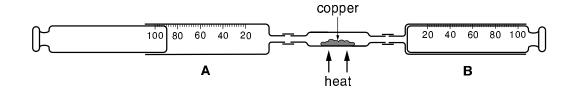
Candidates answer on the question paper. Additional materials: Mathematical tables and/or calculator

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

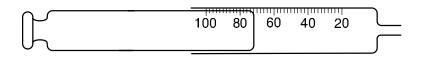
Write your answers in the spaces provided on the question paper.


INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question. You should use names, not symbols, when describing all reacting chemicals and the products formed. Mathematical tables are available.

FOR EXAMINER'S USE

This question paper consists of 14 printed pages and 2 blank pages.


1 A student found the composition of air using the apparatus shown below.

Syringe **A** contained $90 \, \text{cm}^3$ of air. The air was forced over heated copper into syringe **B**. The air was then forced back into syringe **A**.

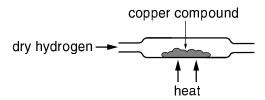
The process was repeated several times until the volume of gas forced back into syringe **A** was constant.

The diagram below shows the volume of gas in syringe **A** after the experiment had finished.

(a) (i) Name the main gas remaining in syringe A.

.....

- (ii) What is the volume of gas remaining in syringe A?
- (iii) Calculate the percentage of this gas in the original sample of air.
- (iv) During the experiment copper formed a compound.


Give the name, formula and colour of this compound.

name

formula

colour[6]

(b) The tube containing the copper compound was removed from the syringes. The copper compound was heated and dry hydrogen gas was passed over it.

(i)	Name the tw compound.	vo products	of the	reaction	between	hydrogen	and	the	copper
(ii)	What is the fu	unction of byc	lrogen i	n this read					
(")									
(iii)	Give a test an	nd result to co	onfirm th	ne presend	ce of hydro	ogen.			
	test								
	result								
									[4]

Silver iodide may be made by the reaction between aqueous potassium iodide and aqueous 2 silver nitrate.

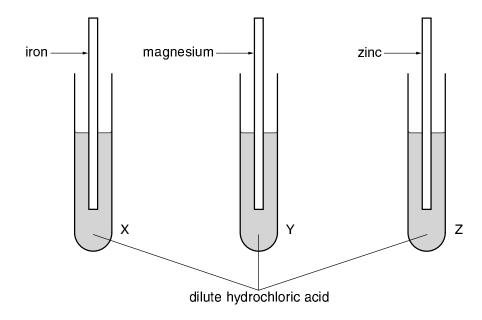
A student added $50\,\mathrm{cm^3}$ of $1.0\,\mathrm{mol/dm^3}$ potassium iodide to $30\,\mathrm{cm^3}$ of $2.0\,\mathrm{mol/dm^3}$ silver nitrate.

$$KI(aq) + AgNO_3(aq) \longrightarrow KNO_3(aq) + AgI(s)$$

		$KI(aq) + AginO_3(aq) \longrightarrow KinO_3(aq) + Agi(s)$
(a)	(i)	Describe what was seen during the reaction.
	(ii)	How could the silver iodide be removed from the mixture?
		[3]
(b)	(i)	Which of the reagents potassium iodide or silver nitrate was in excess? Explain your answer.
		answer
		explanation
	(ii)	Calculate the mass of silver iodide formed (A_r : Ag, 108; I, 127.)
		[5]
(c)	The 1.0 r	student did another experiment to make silver chloride by adding 50cm^3 of mol/dm 3 potassium chloride to 30cm^3 of 2.0mol/dm^3 silver nitrate,
	(i)	Describe the appearance of the silver chloride
		on forming,
		on standing for a few minutes.
	(ii)	Was the mass of silver chloride more than, the same or less than the mass of silver
	(")	iodide in (b)(ii) ? Explain your answer. (A_r : Ag, 108; Cl, 35.5.)
		answer
		explanation
		[43]

5070/4 Nov02

For questions 3 - 6 inclusive, place a tick against the best answer.

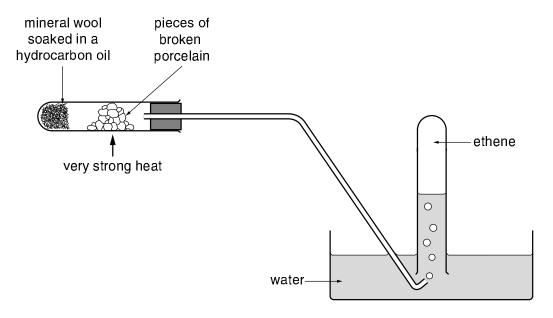

3 A student did some experiments involving carbon dioxide.

Which of the following statements is **not** correct?

- (a) Carbon dioxide was produced by the reaction between calcium carbonate and dilute hydrochloric acid.
- **(b)** The production of carbon dioxide in a solution was indicated by effervescence.
- (c) A solution of carbon dioxide in water turned red litmus blue.
- (d) Carbon dioxide turned lime water milky.

[1]

4 A student placed each of three metals in tubes containing dilute hydrochloric acid.



In which tubes was hydrogen produced?

- (a) X and Y only,
- (b) X and Z only,
- (c) Y and Z only,
- (d) X and Y and Z.

[1]

5 A student prepared ethene from a hydrocarbon oil using the apparatus shown below.

The reaction is an example of

- (a) cracking,
- (b) oxidation,
- (c) polymerisation,
- (d) saturation.

[1]

6 An ester has the structural formula shown below.

It can be prepared by the reaction between:

- (a) methanol and methanoic acid.
- (b) methanol and ethanoic acid.
- (c) ethanol and methanoic acid.
- (d) ethanol and ethanoic acid.

[1]

7 Substance **F** is a fertiliser containing ammonium sulphate.

A student determined the mass of ammonia produced from a sample of F.

He added the sample to a previously weighed container which he re-weighed.

Mass of container and $\mathbf{F} = 10.44 \,\mathrm{g}$ Mass of container $= 8.68 \,\mathrm{g}$ Mass of $\mathbf{F} =$

(a) Calculate the mass of **F** used in the experiment.

..... g [1]

The sample was placed in a beaker and 50.0 cm³ of 1.00 mol/dm³ sodium hydroxide (an excess) was added.

The mixture was heated until the following reaction was complete.

$$(NH_4)_2SO_4(aq) + 2NaOH(aq) \longrightarrow Na_2SO_4(aq) + 2H_2O(l) + 2NH_3(g)$$

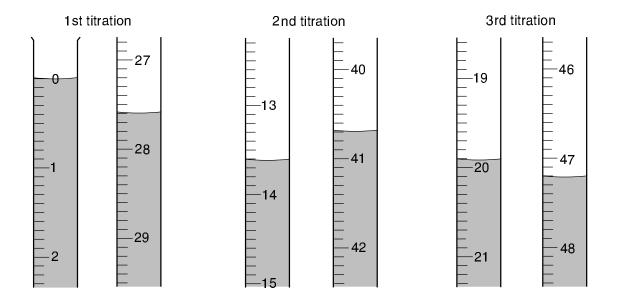
The reaction was complete when all the ammonia was evolved.

(b) Describe a chemical test for ammonia.

result _______[1]

The remaining mixture, which contained excess sodium hydroxide, was transferred to a graduated flask and made up of 250 cm³ with distilled water. This was solution **G**.

 $25.0\,\mathrm{cm^3}$ of **G** was transferred to a titration flask and a few drops of phenolphthalein indicator was added.


0.100 mol/dm³ hydrochloric acid was added to **G** until an end-point was reached.

Phenolphthalein is colourless in acid and red in alkali.

(c) What was the colour change of the indicator at the end-point?

The colour changed from to [1]

Three titrations were done. The diagrams below show parts of the burette at the beginning and end of each titration.

(d) Use the diagrams to complete the following table.

titration number	1	2	3
final reading / cm ³			
initial reading / cm ³			
volume of hydrochloric acid used / cm ³			
best titration results (✔)			

Summary:

(e) Calculate the number of moles of hydrochloric acid in the average volume of 0.100 mol/dm³ hydrochloric acid in (d).

.....[1]

(f) Using the equation

$$HCl + NaOH \longrightarrow NaCl + H_2O$$

Deduce the number of moles of sodium hydroxide in 25.0 ${\rm cm^3}$ of solution ${\bf G}$.

.....[1]

(g)	Using your answer in (f) calculate the number of moles of sodium hydroxide in 250 cm ³ of solution G .
(h)	Calculate the number of moles of sodium hydroxide in 50.0 cm ³ of 1.00 mol/dm ³ sodium hydroxide.
(i)	By subtracting your answer in (g) from your answer in (h) calculate the number of moles of sodium hydroxide which reacted with the sample of F .
(j)	Given that 1 mole of sodium hydroxide produces 17 g of ammonia. Calculate (i) the mass of ammonia produced from the original sample,
	g NH ₃
	g NH ₃ / 100 g fertiliser F [2]

8 The following table shows the tests a student did on substance **S** and the conclusions made from the observations.

Complete the table by describing these observations and suggest the test and observation which led to the conclusion from test 4.

	Test	Observation	Conclusion
1	S was dissolved in water and the solution divided into three parts for tests 2, 3 and 4.		S is not a compound of a transition metal.
2	 (a) To the first part, aqueous sodium hydroxide was added until a change was seen. (b) An excess of aqueous sodium hydroxide was added to the mixture from (a). 		S may contain Al ³⁺ or Zn ²⁺ ions.
3	(a) To the second part, aqueous ammonia was added until a change was seen.(b) An excess of ammonia was added to the mixture from (a).		S contains Zn ²⁺ ions
4			S contains Cl^- ions

Conclusion: The formula for the compound **S** is[9]

9	The reaction	between	aqueous	barium	chloride	and	dilute	sulphuric	acid	produces	а	white
	precipitate.											

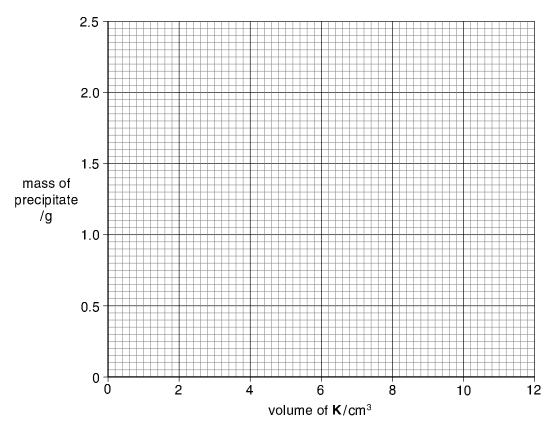
(a)	Name a	and	state	the	formula	of this	precipitate
-----	--------	-----	-------	-----	---------	---------	-------------

ame
ormula[1]

A series of experiments was done to find the mass of precipitate produced.

Solution $\bf J$ is 1.00 mol/dm³ barium chloride Solution $\bf K$ is 1.00 mol/dm³ sulphuric acid

 $10.0\,\mathrm{cm^3}$ of **J** was put into each of six test tubes. Increasing volumes of **K** were added to each test tube. The mixtures were filtered and the precipitates were washed with water, dried and placed in a weighed container which was reweighed.


The table overleaf shows the results of these experiments.

(b) Complete the final column to give the mass of the precipitate.

volume of J / cm ³	volume of K / cm ³	mass of empty container / g	mass of container and precipitate / g	mass of precipitate / g
10.0	2.0	3.50	3.97	0.47
10.0	4.0	3.50	4.43	
10.0	6.0	3.50	4.70	
10.0	8.0	3.50	5.36	
10.0	10.0	3.50	5.83	
10.0	12.0	3.50	5.83	

[2]

(c) Using the grid below, plot the mass of precipitate on the y-axis against the volume of K on the x-axis. Join the points with two straight lines.

[3]

(u)	correct mass of precipitate should be.
	g [1]
(e)	What volume of K would produce 1.60 g of precipitate?
	cm ³ [1]
(f)	Why was the mass of precipitate the same in the last two experiments?
	[1]

(g)	The experiment was repeated using the volumes of J and K as shown in the table
	below. Using your results from the first experiment, complete the final column showing
	the mass of precipitate produced in each case.

volume of J / cm ³	volume of K / cm ³	mass of precipitate / g
2.0	2.0	
2.0	4.0	
2.0	6.0	

[2]

BLANK PAGE

BLANK PAGE

The Periodic Table of the Elements DATA SHEET

_	=							<u>ק</u>	dionb			=	2	>	>		c
-	=												>	>	-	-	>
							-										4
							I										H E
							Hydrogen 1										Helium 2
7	6					-						Ξ	12	14	16	19	20
=	Be											മ	ပ	z	0	щ	Se
J. Lithium	Beryllium 4	E										Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
23	24											27	28		32	35.5	40
Na	Mg											Νſ	Si	_	S	ರ	Ar
Sodium 11	Magnesium 12	E										Auminium 13	Silicon 14	Phosphorus 15	Sulphur 16	Chlorine 17	Argon 18
39	40		48	51	52	55	56	59	59	64		70	73		62	80	84
¥	ပီ		F	>	ပ်	M	Pe	ပိ	Z	చె	Zu	Ga	Ge	As	Se	ģ	ż
Potassium 19	Calcium 20	n Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	lron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32		Selenium 34	Bromine 35	Krypton 36
85	88	68	91	83	96		101	103	106	108	112	115	119	122	128	127	131
ВВ	ທັ	>	Zr	g	Мо	ည	Bu		Pd	Ag	පි	٦	S	gs	<u>l</u> e	Ι	Xe
Pubidium 37	Strontium 38	m Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	n Technetium 43	Puthenium 44	Rhodium 45	Palladium 46	Silver 47	Cadmium 48	Indium 49		Antimony 51	Tellurium 52	lodine 53	Xenon 54
133	137	139	178	181	184	186	190	192	195	197	201	204	207	509			
S	Ва	Га	Ξ	<u>re</u>	≥	æ	SO	ŀ	굺	Αu	Ξ	11	Pp Q	<u></u>	Ъо	Αt	뜐
Caesium 55	Barium 56	Lanthanum 57 *	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridiu m 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86
	226																
Ļ	Ra																
Francium 87	Radium 88	n Actinium 89 †															
*58-71	anthan	*58-71 Lanthanoid sarias	ı	140		144		150	152	157	159	162	165	167	691	173	175
+90-10	Actinois			ပိ	ጟ	ΡN		Sm	Eu	рg	₽	Dy	우	Ē			Lu
<u> </u>		200		Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71
_	c	sem cimote eviteler – e	nio mass														

a = relative atomic mass X = atomic symbol a 🗙

b = proton (atomic) number

Key

PuPlutonium
94 Promethium Neptunium Neodymium 238 **U** Uranium Praseodymium Protactinium 232 **Th** Thorium

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Lawrencium 103

Nobelium 102

Mendelevium 101

Fermium Fermium 100

Ensteinium

Californium

BK Berkelium

Curinm

Americium