UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CHEMISTRY 5070/01

Paper 1 Multiple Choice

May/June 2004

1 hour

Additional Materials: Multiple Choice Answer Sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

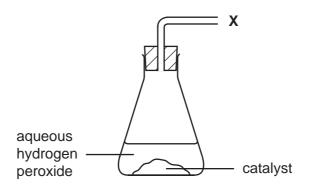
Do not use staples, paper clips, highlighters, glue or correction fluid.

Write your name, Centre number and candidate number on the answer sheet in the spaces provided unless this has been done for you.

There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C, and D.

Choose the one you consider correct and record your choice in soft pencil on the separate answer sheet.

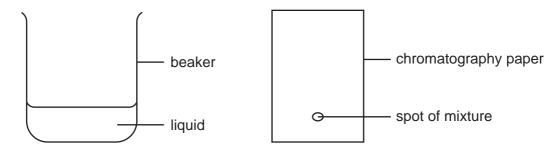
Read the instructions on the Answer Sheet very carefully.


Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

A copy of the Periodic Table is to be found on page 16.

1 Aqueous hydrogen peroxide undergoes catalytic decomposition as shown in the equation below.

$$2H_2O_2(aq) \rightarrow 2H_2O(1) + O_2(q)$$


The diagram shows part of the apparatus used to measure the rate of decomposition.

Which piece of apparatus is connected at position X?

- A burette
- B gas syringe
- C measuring cylinder
- **D** pipette
- 2 A mixture of two substances is spotted on to a piece of chromatography paper.

The paper was inserted into a beaker containing a liquid.

For separation of the substances to occur the mixture must

- A be placed so that the spot is just below the level of the liquid.
- **B** be soluble in the liquid.
- **C** contain substances of the same R_f values.
- **D** contain substances that are coloured.

© UCLES 2004 5070/01/M/J/04

3 In a sample of air at 25 °C, the molecules of oxygen, nitrogen and carbon dioxide all move with different average speeds.

Which of the following lists the molecules in order of decreasing average speed?

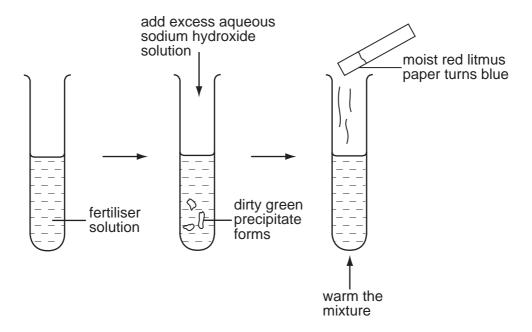
	fastest —		▶ slowest
Α	carbon dioxide	oxygen	nitrogen
В	nitrogen	oxygen	carbon dioxide
С	oxygen	carbon dioxide	nitrogen
D	oxygen	nitrogen	carbon dioxide

- 4 Which of the following is the best method of obtaining pure water from ink?
 - A chromatography
 - **B** distillation
 - **C** filtration
 - **D** freezing
- **5** The relative molecular mass, M_r , of copper(II) sulphate, CuSO₄, is 160.

The relative molecular mass, M_r , of water is 18.

What is the percentage by mass of water in copper(II) sulphate crystals, CuSO₄.5H₂O?

A
$$\frac{18 \times 100}{160}$$


$$\mathbf{B} \quad \frac{5 \times 18 \times 100}{160 + 18}$$

$$C \qquad \frac{18 \times 100}{160 + 18}$$

$$D = \frac{5 \times 18 \times 100}{160 + (5 \times 18)}$$

4

6 A solution of fertiliser was tested as shown.

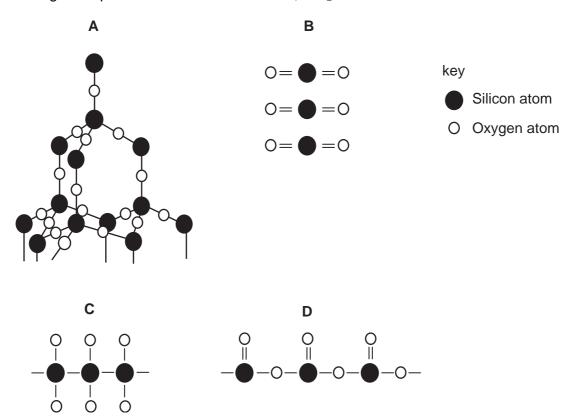
Which ions must be present in the fertiliser?

- A NH₄⁺ and NO₃
- **B** NH_4^+ and Fe^{2+}
- C Fe²⁺ and SO₄²
- **D** Fe³⁺ and NO₃
- 7 An element X has two isotopes, ²³⁸X and ²³⁵X.

How does ²³⁸X differ from ²³⁵X?

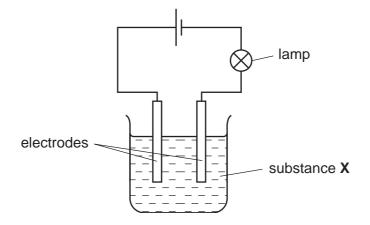
- **A** It has 3 more protons and 3 more electrons.
- **B** It has 3 more protons, but no more electrons.
- **C** It has 3 more neutrons and 3 more electrons.
- **D** It has 3 more neutrons, but no more electrons.

© UCLES 2004 5070/01/M/J/04


8 The formulae of the ions of four elements are shown below.

 O^2 F Li^+ Mg^{2+}

Which statement about these ions is correct?


They all have

- **A** the same number of electrons in their outer shells.
- **B** the same electronic structure as a noble gas.
- **C** the same number of protons in their nuclei.
- **D** more electrons than protons.
- **9** Which diagram represents the structure of sand, SiO₂?

- 10 What happens when sodium chloride melts?
 - A Covalent bonds in a giant lattice are broken.
 - **B** Electrons are released from atoms.
 - **C** Electrostatic forces of attraction between ions are overcome.
 - **D** Molecules are separated into ions.

11 In the circuit below, the lamp lights up.

What could X be?

- A a solution of ethanol in water
- B a solution of sodium chloride in water
- C liquid ethanol
- D solid sodium chloride
- 12 The formula of china clay (aluminium silicate) was shown in an old book as Al₂O₃.2SiO₂.2H₂O.

This formula is shown in a modern book as $Al_2(OH)_xSi_2O_y$.

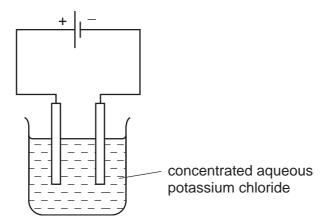
What are the values of x and y in the modern formula?

	Х	У
Α	2	4
В	2	5
С	4	3
D	4	5

- 13 What is the concentration of iodine, I_2 , molecules in a solution containing 2.54 g of iodine in $250\,\text{cm}^3$ of solution?
 - **A** $0.01 \, \text{mol/dm}^3$ **B** $0.02 \, \text{mol/dm}^3$ **C** $0.04 \, \text{mol/dm}^3$ **D** $0.08 \, \text{mol/dm}^3$
- **14** The formula of an oxide of uranium is UO_2 .

What is the formula of the corresponding chloride?

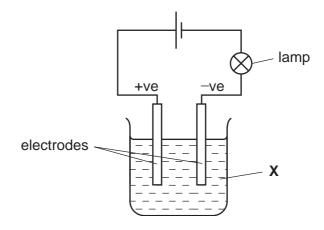
A UCl_2 **B** UCl_4 **C** U_2Cl


 U_4Cl

15 The equation for the burning of hydrogen in oxygen is shown below.

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$

Which information does this equation give about the reaction?


- A 36 g of steam can be obtained from 16 g of oxygen.
- **B** 2g of hydrogen combine with 1g of oxygen.
- **C** 2 mol of steam can be obtained from 1 mol of oxygen.
- **D** 2 atoms of hydrogen combine with 2 atoms of oxygen.
- **16** A current was passed through concentrated aqueous potassium chloride, KC*l*, as shown.

Which entry in the table is correct?

	ions movir	ng towards
	the cathode (-ve)	the anode (+ve)
Α	K ⁺ only	Cl and OH
В	K ⁺ only	C1 only
С	$K^{\scriptscriptstyle{+}}$ and $H^{\scriptscriptstyle{+}}$	C1 only
D	$K^{\scriptscriptstyle +}$ and $H^{\scriptscriptstyle +}$	C <i>l</i> and OH

17 When the experiment shown was set up, the bulb lit, but there were no decomposition products at the electrodes.

What is X?

www.dhivghi.mv

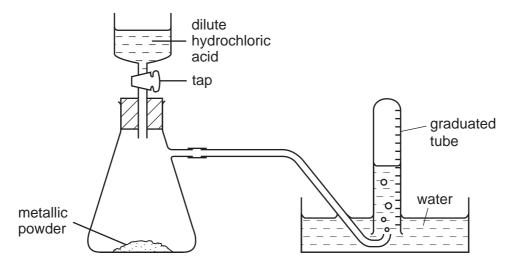
A aqueous sodium chloride

B bromine

C molten sodium chloride

D mercury

18 Which of the following changes is endothermic?


 $\textbf{A} \quad \mathsf{H}(\mathsf{g}) + \mathsf{C} \mathit{l}(\mathsf{g}) \to \mathsf{HC} \mathit{l}(\mathsf{g})$

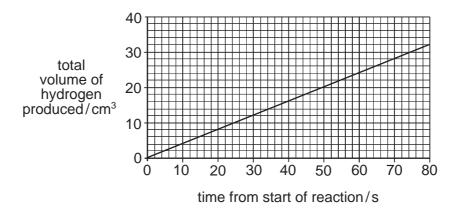
 $\mathbf{B} \quad \mathsf{H}_2\mathsf{O}(\mathsf{g}) \to 2\mathsf{H}(\mathsf{g}) + \mathsf{O}(\mathsf{g})$

 $\textbf{C} \quad H_2O(\textit{1}) \rightarrow H_2O(s)$

D $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$

19 The diagram shows apparatus for measuring the volume of hydrogen given off when an excess of dilute hydrochloric acid is added to powdered metal. The volume of gas is measured at room temperature and pressure.

The experiment is carried out three times, using the same mass of powder each time but with different powders:


- pure magnesium
- pure zinc
- a mixture of magnesium and zinc

Which powder gives the greatest volume of hydrogen and which the least volume?

	greatest volume of H ₂	least volume of H ₂
Α	magnesium	zinc
В	magnesium	the mixture
С	zinc	magnesium
D	zinc	the mixture

- 20 Which change will increase the speed of the reaction between 1 mol of each of the gases, X and Y?
 - A a decrease in surface area of the catalyst
 - B a decrease in temperature
 - **C** a decrease in the volume of the reaction flask
 - **D** an increase in the volume of the reaction flask

21 Dilute hydrochloric acid was reacted with magnesium ribbon and the volume of hydrogen gas evolved was measured for the first 80 s.

What was the average rate of production of hydrogen?

- **A** $0.4 \, \text{cm}^3/\text{s}$
- **B** $2.5 \, \text{cm}^3 / \text{s}$
- $\mathbf{C} \quad 4 \, \mathrm{cm}^3 / \mathrm{s}$
- $D ext{ 40 cm}^3/s$

22 Small portions of aqueous potassium iodide and of acidified, aqueous potassium manganate (VII) were added to four solutions. The colour changes seen are shown in the table.

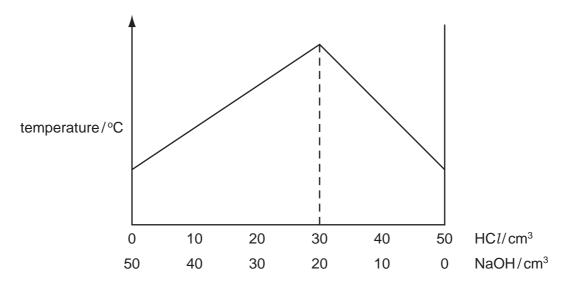
solution number	potassium iodide	potassium manganate(VII)
1	colourless to red	purple to colourless
2	colourless to red	no change
3	no change	purple to colourless
4	no change	no change

Which solutions contained an oxidising agent?

- A 1 only
- **B** 1 and 2 only
- C 1 and 3 only
- **D** 2 and 4 only

23 The table gives information about three indicators.

indicator	colour change low pH ———➤ high pH	pH at which colour change takes place
methyl orange	red — → yellow	4.0
bromothymol blue	yellow ──► blue	6.5
phenolphthalein	colourless pink	9.0


If equal volumes of these three indicators were mixed, which colour would be observed at pH 5?

- A blue
- B green
- **C** orange
- **D** yellow
- 24 A solution of hydrochloric acid has a concentration of 2 mol/dm³.

Different volumes of the acid are added to different volumes of aqueous sodium hydroxide.

NaOH + HC
$$l \rightarrow$$
 NaC l + H₂O

The maximum temperature of each mixture is measured. The graph shows the results.

What is the concentration of the aqueous sodium hydroxide?

- A 0.67 mol/dm³
- \mathbf{B} 1.3 mol/dm³
- \mathbf{C} 1.5 mol/dm³
- \mathbf{D} 3.0 mol/dm³

www.dhivghi.mv

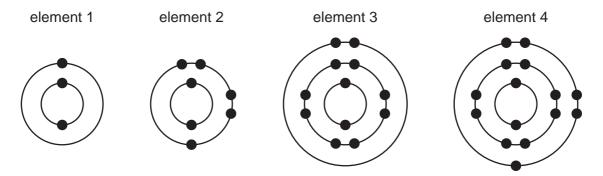
25 Which method of preparation of a pure salt solution requires the use of a pipette and burette?

A BaC $l_2(aq)$ + H₂SO₄(aq) \rightarrow BaSO₄(s) + 2HCl(aq)

B CuO(s) + 2HC $l(aq) \rightarrow CuCl_2(aq) + H_2O(I)$

C KOH(aq) + HCl(aq) \rightarrow KCl(aq) + H₂O(I)

D MgCO₃(s) + H₂SO₄(aq) \rightarrow MgSO₄(aq) + H₂O(I) + CO₂(g)


26 Which statement about the manufacture of ammonia by the Haber Process is correct?

- **A** The reactants and product are elements.
- **B** The reactants and product are gases.
- **C** The reactants and product are compounds.
- **D** The reactants are both obtained from the air.

27 Which of the following occurs in the Contact process?

- A Sulphur dioxide is dissolved in water.
- **B** Sulphur trioxide is dissolved in water.
- **C** Sulphur dioxide is dissolved in dilute sulphuric acid.
- **D** Sulphur trioxide is dissolved in concentrated sulphuric acid.

28 The diagrams show the arrangements of the electrons of four elements.

Which two elements are metals?

- **A** 1 and 2
- **B** 1 and 3
- C 2 and 4
- **D** 3 and 4

© UCLES 2004 5070/01/M/J/04

29 Sodium, aluminium and sulphur are in the same period of the Periodic Table.

What trend in types of oxide occurs across this period?

	left -	•	right
Α	acidic	amphoteric	basic
В	amphoteric	basic	acidic
С	basic	acidic	amphoteric
D	basic	amphoteric	acidic

- 30 Use the Periodic Table to decide which element has all four of the properties shown.
 - high melting point
 - variable oxidation states
 - good electrical conductivity
 - forms coloured compounds
 - A caesium, Cs
 - B cobalt, Co
 - C iodine, I
 - **D** strontium, Sr
- 31 Iron rusts when exposed to oxygen in the presence of water.

Which of these methods will **not** slow down the rate of rusting of an iron roof?

- A attaching strips of copper to it
- **B** coating it with plastic
- C galvanising it with zinc
- **D** painting it
- 32 Why does aluminium have an apparent lack of reactivity?
 - **A** Aluminium has a coating of aluminium oxide, preventing further reaction.
 - **B** Aluminium has a giant molecular structure that is too hard to break.
 - **C** Aluminium is low in the reactivity series.
 - **D** The activation energy for the reaction of aluminium with other elements is too high.

- 33 Which oxide can be reduced to the metal by hydrogen?
 - A calcium oxide
 - B copper(II) oxide
 - C magnesium oxide
 - D sodium oxide
- 34 The data gives the concentration, in parts of pollutant per billion parts of air, of polluting gases in four different industrialised cities.

In which city are limestone buildings under greatest threat from pollution?

city	sulphur dioxide	nitrogen dioxide	ozone
Α	17	46	23
В	32	33	30
С	38	40	11
D	45	14	21

- **35** The water in a lake contains the following dissolved substances.
 - mineral salts
 - nitrates
 - oxygen
 - phosphates
 - sewage

How many of these substances can cause eutrophication?

- **A** 1
- **B** 2
- **C** 3
- **D** 4
- **36** The equation represents the conversion of starch to a simple sugar.

$$(C_6H_{10}O_5)_n + nH_2O \rightarrow nC_6H_{12}O_6$$

starch simple sugar

This reaction is an example of

- A condensation.
- B hydrogenation.
- C hydrolysis.
- **D** polymerisation.

© UCLES 2004

37 Methane, CH₄, the first member of the alkane homologous series, has a boiling point of –161 °C.

Which molecular formula and boiling point could be correct for another alkane?

	molecular formula	boiling point/°C
Α	C_2H_4	-88
В	C_2H_6	-185
С	C ₃ H ₆	-69
D	C ₃ H ₈	-42

38 A student carries out three tests on a gas X.

test	results
damp red litmus paper	stays red
aqueous bromine	stays brown
lighted splint	gas burns

Which gas could be X?

- ammonia
- В ethene
- methane
- D oxygen

39 An organic compound, Y, reacts with sodium hydroxide to give a compound with formula $C_3H_5O_2Na$.

What is compound **Y**?

- ethanol
- propane
- propanoic acid
- propanol
- **40** Which compound has an addition reaction with chlorine?
 - $A C_2H_4$

- $\mathbf{B} \quad \mathsf{C}_2\mathsf{H}_6 \qquad \qquad \mathbf{C} \quad \mathsf{C}_2\mathsf{H}_5\mathsf{OH} \qquad \qquad \mathbf{D} \quad \mathsf{CH}_3\mathsf{CO}_2\mathsf{H}$

© UCLES 2004 5070/01/M/J/04

DATA SHEET
The Periodic Table of the Elements

							·	֓֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓									
_	=							5				≡	≥	>	5		0
							Hydrogen 1										He Helium
7 Lithium 3	9 Beryllium							٦				11 Boron 5	12 Carbon 6	14 Nitrogen 7	16 Oxygen	19 Fluorine	20 Neon 10
Na Sodium	Mg Magnesium	T										27 A1 Aluminium 13	28 Si icon	31 P Phosphorus 15	32 S Sulphur	35 5 C 1 Chlorine	40 Ar Argon
39 K	Cal Calcium	Scandium 21	48 T Ttanium	51 V Vanadium 23	Cr Chromium 24	Manganese	56 Fe Iron	59 Co Cobalt	59 X Nickel	64 Cu Copper 29	65 Zn Zinc 30	70 Ga Gallium	73 Ge Germanium 32	75 AS Arsenic 33	79 Selenium 34	80 Br Bromine 35	84 Kr Krypton 36
Rubidium 37	Strontium	89 ×	91 Zr Zirconium 40	Niobium 41	96 Mo Molybdenum 42		Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium	Sn Tn 50	122 Sb Antimony	128 Te Tellurium	127 I lodine	Xe Xenon 54
	137 Ba Barium 56	139 La Lanthanum 57 *	178 Hf Hafnium 72	181 Ta Tantalum	184 W Tungsten 74	186 Re Rhenium 75	190 OS Osmium 76	192 Ir Iridium	195 Pt Platinum 78	197 Au Gold	201 Hg Mercury 80	204 T1 Thallium	207 Pb Lead	209 Bi Bismuth	Po Polonium 84	At Astatine 85	Radon 86
Francium 87	226 Ra Radium 88	Ac Actinium 89															
*58-71 L 90-103 /	*58-71 Lanthanoid series 90-103 Actinoid series	d series eries	1	140 Ce rium	141 Pr Praseodymium	144 Nd Neodymium	Pm Promethium	Samarium	152 Eu Europium	157 Gd Gadolinium	159 Tb Terbium	162 Dy Dysprosium	165 Ho	167 Er Erbium	169 Tm Thulium	173 Yb Ytterbium	175 Lu Lutetium

175 Lu Lutetium	Lr Lawrencium 103
173 Yb Ytterbium	Nobelium
169 Tm Thulium 69	Md Mendelevium 101
167 Er Erbium 68	
165 Ho Holmium 67	Einsteinium 99
162 Dy Dysprosium 66	Californium 98
159 Tb Terbium 65	BK Berkelium 97
157 Gd Gadolinium 64	Curium Ourium
152 Eu Europium 63	Am Americium 95
Sm Samarium 62	Pu Plutonium
Pm Promethium 61	Neptunium
Neodymium 60	238 U Uranium 92
141 Pr Praseodymium 59	Pa Protactinium 91
140 Ce Cerium	232 Th Thorium

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

b = proton (atomic) number

a = relative atomic massX = atomic symbol

Key