UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | 772370608 CHEMISTRY 5070/02 Paper 2 Theory May/June 2009 1 hour 30 minutes Candidates answer on the Question Paper No additional materials are required #### **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working. Do **not** use staples, paper clips, highlighters, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES. #### Section A Answer all questions. Write your answers in the spaces provided in the Question Paper. #### **Section B** Answer any three questions. Write your answers in the spaces provided in the Question Paper. A copy of the Periodic Table is printed on page 16. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. | For Exam | iner's Use | |-----------|------------| | Section A | | | В8 | | | В9 | | | B10 | | | B11 | | | Total | | This document consists of 16 printed pages. ## Section A Answer all the questions in this section in the spaces provided. For Examiner's Use The total mark for this section is 45. **A1** Choose from the following substances to answer the questions below. copper(II) chloride chlorine ethanoic acid hydrochloric acid manganese(IV) oxide platinum potassium dichromate(VI) sodium chloride sulfuric acid vanadium(V) oxide Each substance can be used once, more than once or not at all. Name a substance which | (a) | is a catalyst in the Contact process, | |-----|---| | | [1] | | (b) | has an aqueous solution that reacts with aqueous sodium hydroxide to give a blue precipitate, | | | [1] | | (c) | is a weak acid, | | | [1] | | (d) | can be used in the test for sulfur dioxide, | | | [1] | | (e) | reacts with aqueous potassium iodide to give a brown colour. | | | [1] | | | [Total: 5] | **A2** Boron nitride, BN, exists in two physical forms. The structures of these forms are shown below. For Examiner's Use These two forms of boron nitride resemble two allotropes of carbon. structure **A** structure **B** | (a) | Suggest why boron nitride with structure A can be used as a lubricant. | |-----|--| | | | | | | | | [2] | | (b) | Suggest why boron nitride with structure B does not conduct electricity. | | | [1] | | (c) | Suggest why boron nitride with structure B can be used in cutting tools and drill bits. | | | | | | | | | To. | | | [2] | | | [Total: 5] | | А3 | Electrolysis | involves | the | decomposition | of | а | compound | by | the | passage | of | an | electric | |----|--------------|----------|-----|---------------|----|---|----------|----|-----|---------|----|----|----------| | | current. | | | | | | | | | | | | | For Examiner's Use [3] (a) (i) Complete the table, which relates to the electrolysis of different solutions using inert electrodes. | electrolyte | ions in electrolyte | product at anode | product at cathode | | |--------------------------------------|--|------------------|--------------------|--| | dilute aqueous potassium nitrate | K ⁺ , H ⁺ , OH ⁻
and NO ₃ ⁻ | oxygen | hydrogen | | | concentrated aqueous sodium chloride | Na ⁺ , H ⁺ ,
OH ⁻ and C <i>l</i> ⁻ | chlorine | hydrogen | | | dilute aqueous copper(II) sulfate | Cu ²⁺ , SO ₄ ²⁻ ,
H ⁺ and OH ⁻ | | | | | dilute sulfuric acid | | oxygen | hydrogen | | (iii) Explain why the electrolysis of concentrated aqueous sodium chloride liberates hydrogen rather than sodium at the cathode. [1] (iii) The electrolysis of dilute aqueous sodium chloride liberates oxygen at the anode. Suggest why the electrolysis of concentrated aqueous sodium chloride liberates chlorine rather than oxygen. | (b) | Aqueous copper(II) sulfate was electrolysed using copper electrodes. The copper anode lost mass as copper(II) ions were formed and the copper cathode gained mass as copper atoms were formed. (i) State one industrial application of this electrolysis. | | | | | | | |-----|--|---------------------|--------------------------|--|--|--|--| | | (ii) The results of an experiment involving the electrolysis of aqueous copper(II) sulfate are shown below. | | | | | | | | | temperature of electrolyte / °C | current used / amps | time of electrolysis / s | mass of copper formed at the cathode / g | | | | | | 20 | 1.0 | 1000 | 0.329 | | | | | | 20 | 2.0 | 1000 | 0.658 | | | | | | 20 | 2.0 | 2000 | 1.320 | | | | | | 25 | 2.0 | 2000 | 1.320 | | | | | | 30 | 1.0 | 1000 | 0.329 | | | | | | mass of coppe | er formed at the | | ach of the variables affects the | | | | | | current | | | | | | | | | | | | [3] | | | | | | | | | | | | | [Total: 9] For Examiner's Use A4 The diagram shows the atomic structure of an atom of element X. = a proton = a neutron (a) Complete the table. | sub-atomic particle | relative charge | relative mass | |---------------------|-----------------|---------------| | electron | -1 | | | neutron | | | | proton | | 1 | | [2] | |-----| | | For Examiner's Use | (b) | Carbon-12 has the symbol ${}^{12}_{6}$ C. | |-----|--| | | Write the symbol for an atom of element X. | | LO. | |-----| | ١٧ | | L | (c) Draw a diagram to show the atomic structure of **another** isotope of element \mathbf{X} . [2] [Total: 6] A5 Chlorine forms some compounds that are covalent and others that are ionic. For Examiner's Use (a) Draw a 'dot-and-cross' diagram for carbon tetrachloride, ${\rm CC}l_4$. You only need to draw the outer electrons of the carbon and chlorine atoms. [2] **(b)** Calcium reacts with chlorine to form calcium chloride. Draw diagrams to show the electronic structures and charges of both ions present in calcium chloride. [2] [Total: 4] **A6** The table shows the concentration of different ions found in a sample of aqueous industrial waste. For Examiner's Use | ion | concentration in mol/dm ³ | |------------------------------|--------------------------------------| | Ca ²⁺ | 0.125 | | H ⁺ | 2.30 | | K ⁺ | 0.234 | | NO ₃ ⁻ | 3.68 | | Fe ²⁺ | 0.450 | Use the information in the table to answer the following questions. (a) Write the formula of one salt that could be obtained from the sample. **(b)** Is the sample of aqueous waste acidic, neutral or alkaline? Explain your answer. (c) Calculate the mass of dissolved iron(II) ions, Fe²⁺, in 25 dm³ of the aqueous waste. [2] mass of iron(II) ions = g (d) Excess aqueous sodium hydroxide is added, a small volume at a time, to a sample of the aqueous industrial waste. Describe and explain what you would observe. | (e) | Describe how you would confirm the presence of dissolved nitrate ions in the sample. | For
Examiner's
Use | |-----|--|--------------------------| | | | 036 | | | | | | | | | | | | | | | | | | | [4] | | | | [Total: 11] | | A7 Poly(chloroethene) is an addition polymer. It is often found in solid household waste. The diagram shows the repeat unit of poly(chloroethene). For Examiner's Use (a) Draw the structure of the monomer used to make poly(chloroethene). [1] - **(b)** One way to dispose of solid household waste is to burn it at a high temperature. The burning of poly(chloroethene) gives the waste gases hydrogen chloride, carbon dioxide and water. - (i) Balance the following equation to show the burning of poly(chloroethene).- $$C_2H_3Cl- +O_2 \rightarrowHCl +CO_2 +H_2O$$ [1] (ii) Hydrogen chloride gas is removed from the waste gases by reacting with moist powdered calcium carbonate. Name the solid product formed. _____[1] **(c)** Name and state the use of a man-made condensation polymer. name of condensation polymer use of condensation polymer[2] [Total: 5] ### **Section B** Answer three questions from this section. | | The total mark for this section is 30. | |------|--| | Peti | rol (gasoline) is a mixture of hydrocarbons, one of which is octane, C ₈ H ₁₈ . | | (a) | Describe briefly how petrol is obtained from crude oil. | | | | | | | | | [2] | | (b) | Octane burns in air. | | | $2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O$ | | | A petrol-powered motor car travels at a constant speed of 80 km/h. For every kilometre travelled 108 g of carbon dioxide are formed. | | | When the motor car travels 100 km calculate | | | (i) the mass of carbon dioxide emitted by the car, | | | | | | [1] | | | (ii) the mass of petrol burned by the car assuming that petrol is 100% octane. | | | | | | | | | [4] | | (c) | In addition to carbon dioxide the exhaust emissions contain both nitric oxide, NO, and carbon monoxide, CO. | | | Describe how a catalytic converter can help to reduce the amounts of nitric oxide and carbon monoxide in the exhaust gases. | | | | | | | | | [2] | | (d) | State one environmental problem caused by nitrogen dioxide. | [Total: 10] For Examiner's Use **B9** Alcohols are an homologous series of organic chemical compounds. The table shows some information about different alcohols. For Examiner's Use | alcohol | formula | boiling point / °C | |----------|-----------------------------------|--------------------| | methanol | CH ₃ OH | 65 | | ethanol | C ₂ H ₅ OH | 78 | | propanol | C ₃ H ₇ OH | 97 | | pentanol | C ₅ H ₁₁ OH | 138 | | (a) | Wh | at is meant by the term homologous series? | |-----|------|--| | | | | | | | | | | | [3] | | (b) | (i) | Estimate the boiling point of butanol[1] | | | (ii) | A molecule of the alcohol hexanol contains six carbon atoms. Write the formula of hexanol. | | | | [1] | | (c) | | anol can be manufactured from ethene. ene reacts with steam in the presence of an acid catalyst to form ethanol. | | | (i) | Write an equation for the reaction between ethene and steam. | | | | [1] | | | (ii) | Name the type of reaction that takes place. | | | | [1] | | (d) | Eth | anol can also be manufactured from glucose, C ₆ H ₁₂ O ₆ . | | | | $C_6H_{12}O_6 \rightarrow 2CO_2 + 2C_2H_5OH.$ | | | | olution containing 18 kg of glucose makes only 0.92 kg of ethanol. culate the percentage yield of ethanol. | [3] B10 Fertilisers supply the essential elements, nitrogen, phosphorus and potassium for plant growth. Examiner's A bag of fertiliser contains 500 g of ammonium sulfate, (NH₄)₂SO₄, and 500 g of potassium nitrate, KNO₃. (a) Calculate the percentage by mass of nitrogen in the bag of fertiliser. [4] **(b)** Eutrophication occurs in river water polluted by fertilisers. Describe the principal processes involved in eutrophication. (c) Potassium sulfate is a soluble salt. Outline the preparation of a pure, dry sample of potassium sulfate, starting from dilute sulfuric acid. [Total: 10] For Use **B11** Aluminium and iron are both metals. For Examiner's Use Iron rusts in the presence of oxygen and water. Rusting involves a series of reactions. Initially iron atoms lose electrons to form iron(II) ions. $$Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-}$$ At the same time oxygen, O₂, and water molecules react to form hydroxide ions. $${\rm O_2(g)} \ + \ 2{\rm H_2O(I)} \ + \ 4{\rm e^-} \ {\color{red} \longrightarrow} \ 4{\rm OH^-(aq)}$$ Aqueous iron(II) ions then react with aqueous hydroxide ions to form solid iron(II) hydroxide. Finally the iron(II) hydroxide is oxidised to give hydrated iron(III) oxide (rust). | (a) | (i) | Explain why | the | formation | of | iron(II) | ions | from | iron | atoms | is | an | example | of | |-----|-----|-------------|-----|-----------|----|----------|------|------|------|-------|----|----|---------|----| | | | oxidation. | | | | | | | | | | | | | |
[1] | |---------| (ii) Write the ionic equation, including state symbols, for the reaction between iron(II) ions and hydroxide ions. **(b)** The table shows part of the reactivity series of metals. | metal | relative reactivity | |-------|---------------------| | zinc | most reactive | | iron | | | tin | least reactive | An iron object plated with either zinc or tin will **not** rust. (i) Suggest how tin stops iron from rusting. | | (ii) | An iron object plated with tin will start to rust if the layer of tin is scratched. An iron object plated with zinc will not rust if the layer of zinc is scratched. Use the information in the table to explain these two observations. | For
Examiner's
Use | |-----|------|--|--------------------------| [3] | | | (c) | Ехр | plain why aluminium will not corrode in the presence of oxygen and water. | | | | | | | | | | [1] | | | (d) | Stat | te a use of aluminium and explain why this metal is particularly suited for the stated | | | | | | | | | | | | | | | [2] | | | | | [Total: 10] | | Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of he University of Cambridge. DATA SHEET The Periodic Table of the Elements | | | | | | | = | or Lerio | | The Periodic Table of the Elements | Lielliell | 2 | | | | | | | |-----|----------------------------------|---|-------------------------------|-----------------------------|--|----------------------------------|-------------------------|---------------------------|------------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|------------------------------------|----------------------------------|-----------------------------------|----------------------------------|--| | | = | | | | | | | 5 | 2 | | | ≡ | ≥ | > | 5 | | 0 | | | | | | | | | Hydrogen | | | | | | | | | | 4 He lium | | | 9
Be
Beryllium | | | | | | | | | | | 11 Boron 5 | 12
C
Carbon
6 | 14 N itrogen 7 | 16
Oxygen | 19 T Fluorine | 20 Neon 10 | | . — | Mg
Magnesium | _ | | | | | | | | | | 27
A t
Aluminium
13 | 28
Si
Silicon | 31
Phosphorus | 32
S
Sulfur
16 | 35 5 C 1 Chlorine | 40
Ar
Argon | | . 8 | 40 Ca Calcium | Scandium | 48 T itanium 22 | 51 Vanadium 23 | Chromium | Manganese | 56
Fe
Iron | 59
Co
Cobalt | 59 Ni ckel | 64
Copper | 65
Zn
Zinc
30 | 70
Ga
Gallium
31 | 73
Ge
Germanium
32 | 75
AS
Arsenic
33 | Selenium 34 | 80
Br
Bromine
35 | 84 Kr
Krypton 36 | | m | 88
Sr
Strontium | 89 × Yttrium | 2r
Zirconium
40 | 93 Nobium 41 | 96
Mo
Molybdenum
42 | Tc
Technetium
43 | Ru
Ruthenium
44 | 103 Rh Rhodium 45 | 106 Pd Palladium 46 | 108
Ag
Silver
47 | 112
Cd
Cadmium | 115 In Indium 49 | Sn
Tin | Sb
Antimony
51 | | 127 I lodine | 131
Xe
Xenon
54 | | 2 | 137
Ba
Barium
56 | 139 La Lanthanum 57 | 178 #
Hafinium | 181 Ta Tantalum | 184 W Tungsten 74 | 186 Re Rhenium 75 | | | 195 P Platinum | 197
Au
Gold | 201
Hg
Mercury
80 | 204 T t Thallium | 207 Pb Lead 82 | | 209 Po Polonium 84 | 210 At Astatine 85 | 222
Rn
Radon
86 | | | 226 Ra Radium | 227
AC
Actinium
89 | | | | | | | | | | | | | | | | | 111 | anthan
Actinoi | * 58–71 Lanthanoid series
† 90–103 Actinoid series | | 140 Ce Cerium | 141
Pr
Praseodymium
59 | Neodymium 60 | Pm
Promethium
61 | Sm
Samarium
62 | 152
Eu
Europium
63 | 157
Gd
Gadolinium
64 | 159 Tb Terbium 65 | 162
Dy
Dysprosium
66 | 165
Ho
Holmium
67 | 167
Er
Erbium
68 | 169
Tm
Thulium
69 | Yb Ytterbium 70 | 175
Lu
Lutetium
71 | | ~ ~ | σ × σ | a = relative atomic massX = atomic symbolb = atomic (proton) number | nic mass
ool
on) number | 232
Th
Thorium | 231 Pa Protactinium 91 | 238
U
Uranium
92 | Neptunium | Pu
Putonium
94 | 243 Am Americium | 247
Cm
Curium | 247 BK Berkelium | | | 257 Fm Fermium 100 | 258
Md
Mendelevium
101 | 259 Nobelium 102 | 260 Lr
Lr
Lawrencium
103 | | | | | _ | | | | | | | | | | | | | | | The volume of one mole of any gas is 24dm³ at room temperature and pressure (r.t.p.).