

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY

5070/21

Paper 2 Theory

October/November 2010

1 hour 30 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Section A

Answer all questions.

Write your answers in the spaces provided in the Question Paper.

Section B

Answer any three questions.

Write your answers in the spaces provided in the Question Paper.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
Section A		
В6		
В7		
В8		
В9		
Total		

This document consists of 16 printed pages and 4 blank pages.

Section A

For Examiner's Use

Answer all the questions in this section in the spaces provided.

The total mark for this section is 45.

A1 The structural formulae of some compounds containing the element carbon are shown.

(a) Choose from the compounds A, B, C, D, E and F to answer the questions below. Each compound can be used once, more than once or not at all.

Which one of these compounds is

(i)	responsible for the depletion of ozone in the upper atmosphere,

.....[1]

(ii) a poisonous gas produced by the incomplete combustion of hydrocarbons,

.....[1]

(iii) an unsaturated hydrocarbon,[1]

(vi) an isomer of butane?[1]

(b) Name compound B.

.....[1]

[Total: 7]

A2	The symbols of some shown below.	atoms and	ions includi	ing their r	nucleon nur	mber and proton	number are
		⁴⁰ Co2+	⁵⁸ = 3+	⁷⁰ Co	⁵⁵ Mp2+	58 _{NI} :	

			20 20	26	31	25	1NI 28	
(a)	Whi	ch one of the	ese atoms o	r ions has	the great	est numbe	r of protons?	
(b)		ch two of the	se atoms o	r ions have	e the sam	ne number o		
(c)	Stat	e the number	r of electron	ns in the ion	n ⁵⁵ Mn ²⁺			
(d)		e the full elec	ctronic confi	guration o	f the ion	⁴⁰ Ca ²⁺ .		
(e)	(i)						iagram to show t	
								[2]
	(ii)	State one sp	pecific use o	of nickel ot	her than	its use in a	lloys.	
	(iii)	Explain why					pure iron.	[1]
								-

[Total:9]

А3	Carbonyl chloride, ($COCl_2$, is a c	olourless, poisc	onous gas for	rmed when	carbon ı	monoxide
	and chlorine combin	ne in tĥe prese	nce of sunlight.	The forward	reaction is e	xotherm	ic.

$$CO(g) + Cl_2(g) \iff COCl_2(g)$$

(a)	Predict and explain how each of the following affects the position of equilibrium in this reaction:					
	(i)	ncreasing the concentration of chlorine;				
		[2	.]			
	(ii)	ncreasing the pressure;				
		[2	.]			
	(iii)	ncreasing the temperature.				
		[2	.]			
(b)	Car	onyl chloride reacts with ammonia to form urea, $(\mathrm{NH_2})_2\mathrm{CO}$, and ammoniunde.	n			
	Wri	an equation for this reaction.				
		[2	<u>'</u>]			

ore	a can be used as a lertiliser.	For
(i)	How do fertilisers increase crop yields?	Examiner's Use
	[1]	
(ii)	Urea is produced industrially by the reaction of ammonia with carbon dioxide.	
	The ammonia is manufactured using the Haber process by combining the elements nitrogen and hydrogen.	
	State the essential conditions in the Haber process which are necessary in order to produce a high yield of ammonia.	
	[3]	
	[Total: 12]	

A4	Many inks contain salts of the metals potassium, iron, cobalt and nickel in addition to ethanoic acid and gallic acid.						
	(a)	(i)	State two differences in the physical properties of the metals potassium and iron.				
			[2]				
		(ii)	State one difference in the chemical properties of potassium and iron.				
			[1]				
	(b)		alysis of 21.25g of gallic acid showed that it contained 10.50g of carbon, 0.75g of rogen and 10.00g of oxygen.				
		Sho	w that the empirical formula of gallic acid is $\mathrm{C_7H_6O_5}$.				
			[3]				
	(c)	Gall	lic acid can be used as a photographic developer. It reduces silver ions to silver.				
		(i)	Write an equation for the reduction of silver ions to silver.				
			[1]				
		(ii)	Explain why this is a reduction reaction.				
			[1]				
	(d)	The	blue colour of ink is due to the reaction between gallic acid and iron(III) ions.				
		Des	cribe a standard test for iron(III) ions.				
		test.					
		resu	ult[2]				

[Total: 10]

[2]

Α5	A student electrolysed an aqueous solution of potassium bromide using carbon electrodes.	E

(a) Draw a labelled diagram of a suitable apparatus that can be used for this electrolysis.

(b)	The	ions present in an aqueous solution of potassium bromide are H ⁺ , OH ⁻ , K ⁺ and Br ⁻ .
	(i)	Describe what you would observe in the region of the anode during the electrolysis.
		[1]
	(ii)	At the cathode, hydrogen gas is given off.
		Describe a test for hydrogen.
		test
		result[2]
	(iii)	Write an equation for the reaction at the cathode.
		[1]
	(iv)	Explain why potassium is not discharged at the cathode.
		[1]
		[Total: 7]

Answer three questions from this section in the spaces provided.

The total mark for this section is 30.

B6 Part of Mendeleev's original Periodic Table showing an arrangement of elements according to their similar properties is shown below. The numbers are the atomic masses of the elements.

			Fe = 56
			Ni / Co = 59
H = 1			Cu = 63.4
	Be = 9.4	Mg = 24	Zn = 65.2
	B = 11	Al = 27.4	element X
	C = 12	Si = 28	element Y
	N = 14	P = 31	As = 75
	O = 16	S = 32	Se = 74.9
	F = 19	C <i>l</i> = 35.5	Br = 80
Li = 7	Na = 23	K = 39	Rb = 85.4
		Ca = 40	Sr = 87.6

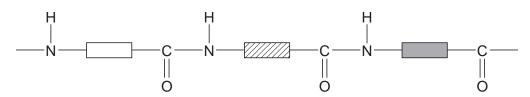
(a)	Mendeleev listed the elements in order of their atomic masses.
	What determines the order of the elements in the modern Periodic Table?
	[1]
(b)	Mendeleev predicted the properties of the undiscovered element X. You will find element X in the table above.
	Study the pattern in which the elements are arranged in the table above. Deduce to which Group in the modern Periodic Table element X belongs.
	[1]
(c)	Describe two other differences between Mendeleev's original Periodic Table and the modern Periodic Table.
	[2]

(d)	Iron	, cobalt and nickel have similar properties.
	(i)	State the name of the block of elements in the modern Periodic Table which includes iron, cobalt and nickel.
		[1]
	(ii)	Iron reacts with dilute hydrochloric acid.
		$Fe(s) + 2HCl(aq) \longrightarrow FeCl_2(aq) + H_2(g)$
		Use ideas about particles to describe and explain the effect of temperature on the speed of this reaction.
		[2]
(e)		ium, sodium and potassium are elements which show a trend in melting points and ction with water.
	(i)	Describe the trend in the reaction of these elements with water.
	(ii)	Write an equation for the reaction of sodium with water.
		[1]
	(iii)	The melting points of lithium, sodium and potassium are:
		lithium 181°C sodium 98°C potassium 63°C
		Predict the melting point of rubidium.
		[1]
		[Total: 10]

B7 The table shows the boiling points of the first four members of the alkane homologous series. It also shows the enthalpy changes when these alkanes undergo complete combustion.

For Examiner's Use

alkane	boiling point /°C	enthalpy change of combustion/kJ per mole
methane	-161	- 890
ethane	- 88	-1560
propane	- 42	-2219
butane	0	-2877


(a)		te two characteristics of a homologous series.
		[2]
(b)	Pen	tane is the next member of the alkane homologous series.
	(i)	Give the molecular formula of pentane.
		[1]
	(ii)	Predict the boiling point of pentane.
		[1]
(c)	(i)	What information in the table tells you that the combustion of alkanes is exothermic?
		[1]
	(ii)	In terms of bond making and bond breaking, explain why the combustion of alkanes is exothermic.
		[2]

For Examiner's Use	approximately the same. Suggest why.	
	[2]	
	Methane is an atmospheric pollutant. Give one source of this pollutant.	(d)
	[1]	
	[Total: 10]	

B8	Pro	teins	are naturally occurring macromolecules.	
	(a)	(i)	What do you understand by the term <i>macromolecule</i> ?	
		(ii)	Name another naturally occurring macromolecule. [1]	
	(b)	Prot	eins can be hydrolysed to amino acids.	
		Stat	e a suitable reagent and condition for this hydrolysis.	
		reag	gent	
		cond	dition[2]	
	(c)	The	amino acids can be identified by paper chromatography.	
			cribe, with the aid of a labelled diagram, how paper chromatography can be used to tify particular amino acids.	
			[41]	

(d) The structure of a section of a protein can be represented as:

(i)	Describe one similarity in the structure of a protein and the structure of nylon.
	[1]
(ii)	Describe one way in which the structure of a protein differs from the structure of nylon.

[Total: 10]

								14							
В9			ie, PH ₃ , i with aque					l of ga	rlic. It	is fo	rmed whe	n white pl	hosphoru		For Examiner's Use
			4F	+	3NaOH	+	3H ₂ O	\rightarrow	PH_3	+	3NaH ₂ PC) ₂			000
	(a) [Drav	v a 'dot-a	nd-cro	oss' diag	ram 1	for pho	sphine).						
	5	Shov	w only the	e oute	r electro	ns.									
														[1]	
	(b) (Calculate reacts w								ned when	1.86g of	phospho	rus	
								·							
														[2]	
	(i	ii)	Calculate	e the v	olume o	of pho	osphine	e forme	ed fron	n 1.8	86g of pho	sphorus	at r.t.p.		
														[1]	

(c) Phosphine decomposes into its elements on warming. Write an equation for this

© UCLES 2010 5070/21/O/N/10

reaction.

(u)	FIIO	sprime reacts with hydrogen locate to form the salt phosphorium locate, Ph ₄ 1.
		sphonium salts react in a similar way to ammonium salts when warmed with aqueous ium hydroxide.
	(i)	Write an equation for the reaction of phosphonium iodide with aqueous sodium hydroxide.
		[1]
	(ii)	What should you notice when sodium hydroxide is warmed with phosphonium iodide?
		[1]
(e)	Pho	sphine is formed when water reacts with calcium phosphide, Ca ₃ P ₂ .
	Cald	cium phosphide is an ionic compound.
	(i)	Write the formula for the phosphide ion.
		[1]
	(ii)	Predict one physical property of calcium phosphide.
		[1]
		[Total: 10]

BLANK PAGE

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of he University of Cambridge.

ū DATA SHEET 6 F

						F	he Perio	dic Table	The Periodic Table of the Elements	Element	ts S						
								Gre	Group								
_	=											=	2	>	>	II/	0
							1 T Hydrogen										4 He ium
7 L : Lithium	9 Be Beryllium	Ε										11 Boron 5	12 Carbon 6	14 N itrogen 7	16 Oxygen	19 Fluorine	20 Ne on 10
23 Na Sodium	24 Magnesium	§										27 A1 Aluminium 13	28 Si Silicon	31 Phosphorus 15	32 S Sulfur	35.5 C1 Chlorine	40 Ar Argon
39 X Potassium	Calcium	Scandium 21	48 T Titanium	51 Vanadium 23	Chromium	Mn Manganese 25	56 Fe Iron	59 Cobalt	59 N ickel	64 Cu Copper	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	75 AS Arsenic 33	79 Selenium 34	80 Br Bromine 35	84 Kr Krypton 36
85 Rb Rubidium 37	Strontium 38	89 ×	91 Zr Zirconium 40	93 N Niobium	96 Mo Molybdenum 42	Tc Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium	106 Pd Palladium	108 Ag Silver 47	Cadmium Cad Cad Cadmium 48	115 In Indium 49	Sn Tin 50	Sb Antimony 51	128 Te Tellurium 52	127 I lodine	131 Xe Xenon 54
133 Cs Caesium 55	137 Ba Barium 56	139 La	178 Ha fnium 72	181 Ta Tananan Tananan Tananan Tananan Tananan Tananan Tanan Tan	184 W Tungsten 74	186 Re Rhenium 75			195 Pt Platinum 78	197 Au Gold		204 T (Thallium	207 Pb Lead		209 Po Polonium 84	210 At Astatine 85	222 Rn Radon 86
223 Fr Francium 87	226 Ra Radium 88	227 AC n Actinium 89															
* 58–71 † 90–1(1 Lantha 03 Actin	* 58–71 Lanthanoid series † 90–103 Actinoid series	1	140 Ce Cerium 58	Pr Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	173 Yb Ytterbium 70	Lu Lu Lutetium 71

			9
<u> </u>	ĭ	Praseodymium	59
<u>+</u>	စ္	Cerium	58
* 58-71 Lanthanoid series	+ 90_103 Actinoid series		

)			Cerium 58
. 06		Ø	a = relative atomic mass	- 1
. 06	<u>~</u>	×	X = atomic symbol	H
		b	b = atomic (proton) number	Thorium 90

			,
	Ø	a = relative atomic mass	
	×	X = atomic symbol	
۵		b = atomic (proton) number	0)

Κ Θ

The volume of one mole of any gas is 24dm3 at room temperature and pressure (r.t.p.).

260 **Lr**Lawrendum
103

259 Nobelium

258

Md

Mendelevium
101

257 **Fm** Fermium 100

252 **Es** Einsteinium 99

Californium

247 **BK**Berkelium
97

Curium

243 **Am**Americium
95

Pu Pu Plutonium 94

Neptunium 93

Pa Protactinium 91