

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

82437968

CHEMISTRY 5070/41

Paper 4 Alternative to Practical

May/June 2011

1 hour

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

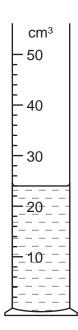
DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Write your answers in the spaces provided in the Question Paper.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.


For Examiner's Use

This document consists of **16** printed pages.

1

The apparatus shown above contains aqueous ethanoic acid.

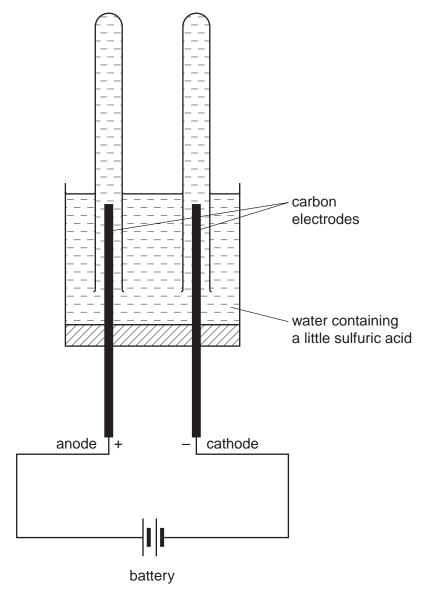
(a)	Nar	ne the apparatus.
		[1]
(b)	Wh	at is the volume of aqueous ethanoic acid in the apparatus?
		cm ³ [1]
(c)	Wh	at is observed when
	(i)	a few drops of litmus solution are added to some aqueous ethanoic acid,
		[1]
	(ii)	aqueous ethanoic acid is added to a test-tube containing a few grams of solid calcium carbonate?
		[1]
(d)	Nar	ne and give the formula of the alcohol which, on oxidation, gives ethanoic acid.
	nan	ne
	forn	nula[1]
		[Total: 5]

2

For Examiner's Use

Cai	Ciuiii	Suilate Crystals have the formula Caso	4. X ₂	O where x is a whole number.
(a)	A s	tudent places some calcium sulfate crys	stals in	a previously weighed crucible.
		ss of crucible + crystals ss of crucible	= =	11.20g 5.80g
	Cal	culate the mass of crystals used in the	experir	ment.
				g [1]
(b)		e crucible is heated to remove all the wa e crucible and contents are allowed to co		
	ma	ss of crucible and contents after heating	j =	10.07 g
	(i)	Calculate the mass of calcium sulfate a	after h	eating.
	(ii)	Calculate the mass of water removed I	by hea	g [1] ating.
(c)	Cal	culate		g [1]
()	(i)	the formula mass, M_r , of CaSO ₄ ,		
	(ii)	the formula mass, M_r , of water H_2O . [A_r : H,1; O,16; S, 32; Ca, 40]		
		CaSO ₄		
		H ₂ O		[1]

(d) In the formula CaSO₄.**x**H₂O, **x** is a whole number. Use the equation below to calculate the value of **x**.


For Examiner's Use

$$\mathbf{x} = \frac{\text{answer (b)(ii)} \times M_r \text{ CaSO}_4}{\text{answer (b)(i)} \times M_r \text{ H}_2\text{O}}$$

	X =									[1]
(e)	What general name is crystallisation?	given to	compounds	that	have	lost	all	their	water	of
										[1]
									[Total	: 6]

3 The apparatus below is used to electrolyse water.

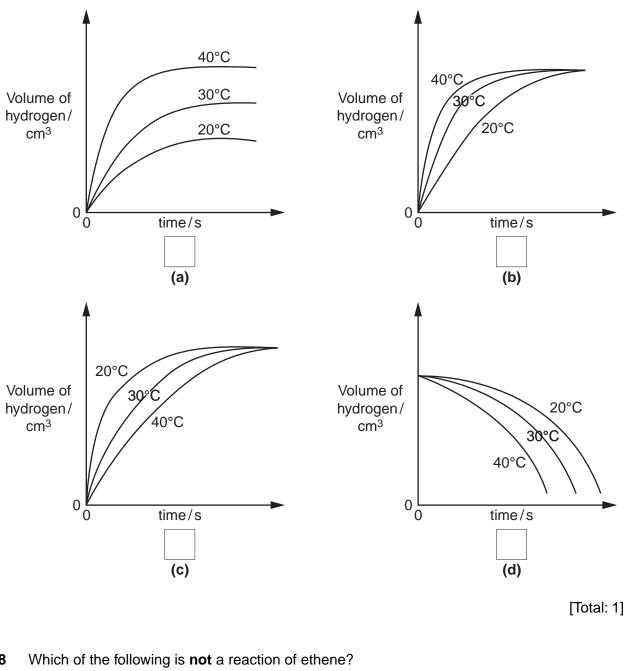
- (a) Why is a small volume of sulfuric acid added to the water?
 -[1]
- (b) (i) Name the gas collected at the anode.
 - gas[1]
 - (ii) Give a test for this gas.

test

observation[1]

(iii) Write the ionic equation for the reaction taking place at the anode.

.....[2]


(c)	(i)	Name the gas collected at the cathode.	For Examiner's
		gas[1]	Use
	(ii)	Give a test for this gas.	
		test	
		observation[1]	
	(iii)	Write the ionic equation for the reaction taking place at the cathode.	
		[1]	
(d)		en 20 cm ³ of gas has been collected at the anode, what volume of gas will have en collected at the cathode?	
		cm ³ [1]	
		[Total: 9]	

In q	uesti	ons 4 to 8 inclu	ısive, place a ti	ck (\checkmark) in the b	ox against th	ne correct answe	r.	For Examiner's Use
4	Whi	ch of the follow	ring is a proper	ty of hydrochlo	oric acid?			
	(a)	It turns litmus	paper blue.					
	(b)	It reacts with a	any metal to giv	e hydrogen.				
	(c)	It liberates am	monia from am	nmonium salts				
	(d)	It reacts with a	any base to give	e a salt.			[1]	
							[Total: 1]	
5		udent adds a s ch of the follow	-		aker half-fille	ed with water.		
	(a)	Sodium reacts	s vigorously on	the surface of	the water.			
	(b)	The temperatu	ure of the water	r increases du	ring the read	etion.		
	(c)	Oxygen is pro	duced during th	ne reaction.				
	(d)	The resulting	solution is aque	eous sodium h	ydroxide.		[1]	
							[Total: 1]	
6		al R displaces	metal S from	a solution of	its ions. Me	etal S displaces	metal T from a	
	Wha	at could R , S ar	nd T be?					
		R	S	Т				
	(a)	calcium	silver	zinc				
-	(b)	calcium	zinc	silver				
	(c)	silver	calcium	zinc				
-	(d)	zinc	silver	calcium				
Ĺ							[1]	
							[Total: 1]	

A student adds an excess of zinc to 50 cm³ of 1.00 mol/dm³ hydrochloric acid at 20 °C. 7 Hydrogen is produced. The experiment is repeated at 30 °C and 40 °C. In each case the volume of hydrogen collected is plotted against time.

For Examiner's Use

Which one of the following represents the volumes of hydrogen produced in the three experiments?

- 8
 - (a) Ethene reacts with ethanoic acid to form an ester.
 - **(b)** Ethene polymerises into a material which is used to make plastic bags.
 - (c) Ethene burns to form carbon dioxide and water.
 - (d) Ethene decolourises aqueous bromine.

[Total: 1]

9 Substance F is a fertiliser containing ammonium sulfate. A student determines the mass of ammonia produced from 1000 g of F.

For Examiner's Use

(a) A sample of F is added to a previously weighed container which is then reweighed.

mass of container +
$$\mathbf{F}$$
 = 9.22 g
mass of container = 7.46 g

Calculate the mass of **F** used in the experiment.

The sample of **F** is placed in a beaker and 50 cm³ of 1.00 mol/dm³ sodium hydroxide, an excess, is added.

The mixture is heated until all the ammonia gas has evolved.

$$(NH_4)_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O + 2NH_3$$

After cooling, the remaining mixture, which contains excess sodium hydroxide, is transferred to a graduated flask and made up to $250\,\mathrm{cm}^3$ with distilled water. This is solution **G**.

25.0 cm³ of **G** is transferred to a conical flask and a few drops of phenolphthalein indicator are added.

A burette is filled with 0.100 mol/dm³ hydrochloric acid.

0.100 mol/dm³ hydrochloric acid is added to **G** until an end-point is reached.

Phenolphthalein is colourless in acid solution and pink in alkaline solution.

- **(b)** What is the colour of the solution in the conical flask
 - (i) before hydrochloric acid is added,

.....

(ii) at the end-point?

.....[1]

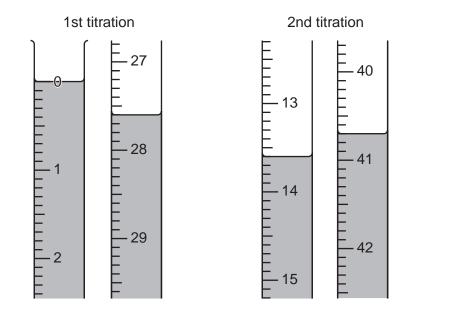
(c) Three titrations are done.

The diagrams below show parts of the burette with the liquid levels at the beginning and end of each titration.

For Examiner's Use

3rd titration

19


20

21

46

47

48

Use the diagrams to complete the following table.

titration number	1	2	3
final reading/cm ³			
initial reading/cm ³			
volume of hydrochloric acid used/cm ³			
best titration results (✓)			

Summary:

Tick (\checkmark) the best titration results.

Using these results, the average volume of hydrochloric acid used is

(d) Calculate the number of moles of hydrochloric acid in the average volume of 0.100 mol/dm³ hydrochloric acid in (c).

..... moles [1]

(e) Using the equation

HCl + NaOH
$$\rightarrow$$
 NaCl + H $_2$ O

deduce the number of moles of sodium hydroxide in $25.0\,\mbox{cm}^3$ of G.

..... moles [1]

(f)	Using your answer in (e) calculate the number of moles of sodium hydroxide in 250 cm ³ of G .	For Examiner's Use
	moles [1]	
(g)	Calculate the number of moles of sodium hydroxide in $50\mathrm{cm^3}$ of $1.00\mathrm{mol/dm^3}$ sodium hydroxide.	
	moles [1]	
(h)	By subtracting your answer in (f) from your answer in (g) calculate the number of moles of sodium hydroxide which reacts with the sample F .	
	moles [1]	
(i)	Given that 1 mole of sodium hydroxide produces 17 g of ammonia. Calculate	
	(i) the mass of ammonia produced from the original sample of F ,	
	g NH ₃ [1]	
	(ii) the mass of ammonia produced from 1000 g of F .	
	g NH ₃ /1000 g fertiliser F [1]	
(j)	Like ammonium sulfate, ammonium nitrate $\mathrm{NH_4NO_3}$, is a 'nitrogenous fertiliser' which is used to promote plant growth and increase crop yield.	
	Which two compounds will react together to form aqueous ammonium nitrate?	
	and[1]	
		1

(k)	Calculate the mass of nitrogen in 1000 g of ammonium nitrate. [A _r : H,1; N,14; O,16]	For Examiner's Use
	g/1000 g [1]	
	[Total: 15]	

10 The following table shows the tests a student does on compound **Y** and the conclusions made from observations.

For Examiner's Use

Complete the table by stating the observations in tests (a), (b)(ii) and (c)(ii), the conclusions in tests (b) and (c) and both the test and observation in test (d).

		test	observation	conclusion
(a)	and into	dissolved in water the solution divided three parts for tests (c) and (d).		Y is a compound of a transition metal.
(b)	(i)	To the first part, aqueous sodium hydroxide is added until a change is seen. An excess of aqueous sodium hydroxide is added to the mixture from (b)(i).	A red-brown precipitate is formed.	
(c)	(i) (ii)	To the second part, aqueous ammonia is added until a change is seen. An excess of aqueous ammonia is added to the mixture from (c)(i).	A red-brown precipitate is formed.	
(d)				Y contains NO ₃ ⁻ ions.

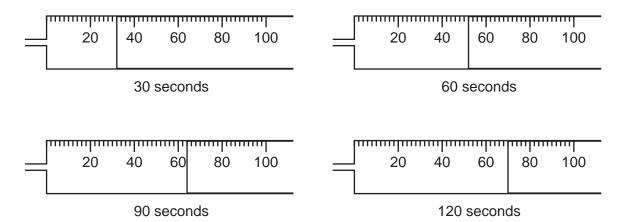
Conclusion: the formula for Y is	
Outloid Citit and I citit and I cit	

11 When potassium chlorate(V) is heated it decomposes and oxygen is evolved.

For Examiner's Use

Experiment 1

A student heats a sample of potassium chlorate(V) for three minutes. The volume of oxygen produced is measured in the syringe.

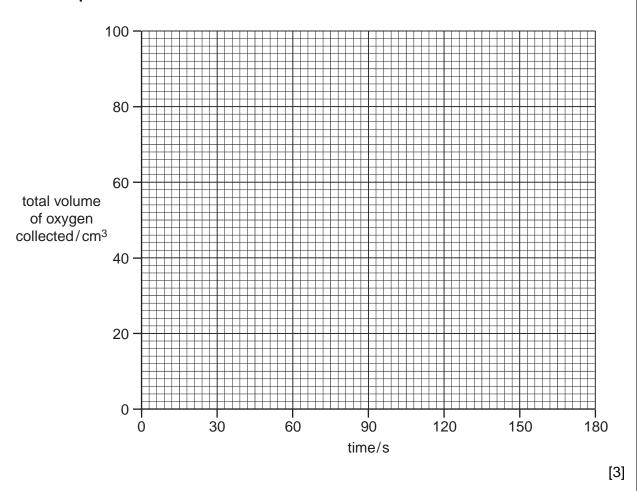

The results are shown in the table below.

Experiment 2

The experiment is repeated using the same mass of potassium chlorate(V) to which a small amount of copper(II) oxide is added.

All other conditions are the same.

The diagram shows the volume of oxygen produced in this experiment after 30, 60, 90 and 120 seconds.


(a) Complete the table using the volumes of oxygen as shown in the diagrams.

time/s	volume of oxygen collected/cm ³ experiment 1	volume of oxygen collected/cm ³ experiment 2	
30	22		
60	40		
90	54		
120	64		
150	70	72	
180	72	72	

[1]

(b) Plot the results for both experiment 1 and experiment 2 on the grid below and draw a smooth curve through each set of points. Label the curves 'experiment 1' and 'experiment 2'.

For Examiner's Use

(c) Use your graphs to answer the following questions.

(i)	What volume of	oxygen is	produced in	n experiment	1 after 45 seconds

...... cm³ [1]

(ii) How much more oxygen is produced after 75 seconds in **experiment 2** than in **experiment 1**? Show your working.

..... cm³ [2]

(d) Suggest the function of copper(II) oxide in the **experiment 2**.

.....[1]

(e) Why are the final two readings recorded in the table for experiment 2 the same?

.....[1]

(f)	The equation	for the	reaction	is
-----	--------------	---------	----------	----

2KClO ₃	\rightarrow	2KC <i>l</i>	+	3O ₂
--------------------	---------------	--------------	---	-----------------

For Examiner's Use

By referring to your results in the table, calculate the mass of potassium chlorate(V) used in the experiment.

Show your working.

[1 mole of a gas has a volume of $24 \, \mathrm{dm}^3$ at room temperature and pressure.] [A_r : O,16; Cl, 35.5; K, 39]

..... g [3]

[Total: 12]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.