

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS

0580/04

Paper 4 (Extended)

October/November 2009

2 hours 30 minutes

Candidates answer on the Question Paper.

Additional Materials: Electronic calculator

Mathematical tables (optional)

Geometrical instruments Tracing paper (optional)

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown below that question.

Electronic calculators should be used.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π use either your calculator value or 3.142.

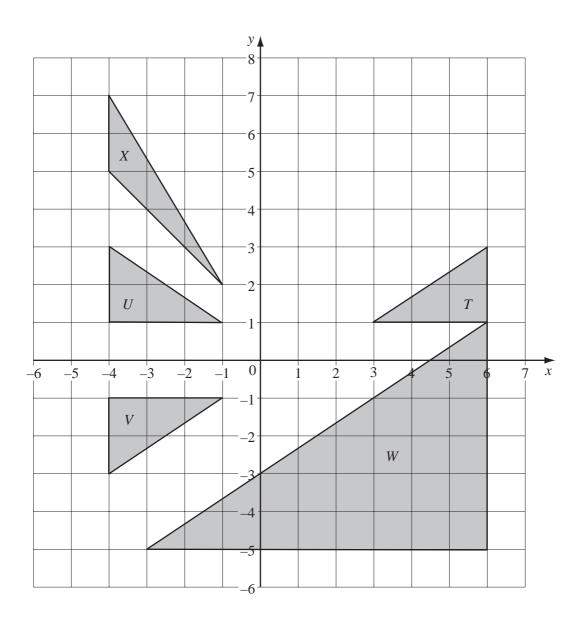
At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 130.

For Examiner's Use

This document consists of 21 printed pages and 3 blank pages.


For Examiner's Use

Chr	is go	es to a snop to buy meat, vegetables	and fruit.		
(a)	(i)	The costs of the meat, vegetables ar	nd fruit are in t	he ratio	
		meat : vegetables : fruit = 2 :	: 2 : 3.		
		The cost of the meat is \$2.40.			
		Calculate the total cost of the meat,	, vegetables an	d fruit.	
			4(-)(i)	o e	[2]
	(!!)	Chair ann an idea (20 and	Answer(a)(1)		[2]
	(ii)	Chris pays with a \$20 note.	49		
		What percentage of the \$20 has he s	spent?		
			Answer(a)(ii)	% [2]
(b)	The	e masses of the meat, vegetables and	fruit are in the	ratio	
` ′		meat : vegetables : fruit = 1 :			
	The	total mass is 9 kg.			
	Cal	culate the mass of the vegetables.			
			Answer(b)	kş	g [2]

© UCLES 2009 0580/04/O/N/09

(c)	Calculate the cost per kilogram of the fruit.	
	<i>Answer(c)</i> \$	[3]
(d)	The cost of the meat, \$2.40, is an increase of 25% on the cost the previous week.	
	Calculate the cost of the meat the previous week.	
	Calculate the cost of the meat the previous week.	
	Calculate the cost of the meat the previous week.	
	Calculate the cost of the meat the previous week.	
	Calculate the cost of the meat the previous week.	
	Calculate the cost of the meat the previous week.	
	Calculate the cost of the meat the previous week. Answer(d) \$	[2]

- (a) Describe fully the **single** transformation which maps
 - (i) triangle T onto triangle U,

Answer(a)(i) _______[2]

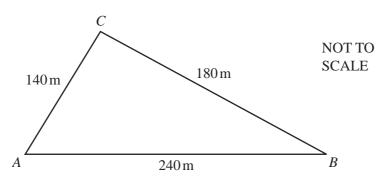
(ii) triangle T onto triangle V,

Answer(a)(ii) [3]

(iii)	triangle T onto triangle W ,				For Examiner's Use
Answer(a	$O(\mathrm{iii})$ triangle U onto triangle X .		 	[3]	
Answer(a	<i>y</i> (iv)		 	[3]	
	If the matrix representing the transform triangle U onto triangle V ,	Formation which maps			
(ii)	triangle U onto triangle X .	Answer(b)(i)		[2]	
		Answer(b)(ii)		[2]	

Examiner's Use

3


12 1 11 6 Six cards are numbered 1, 1, 6, 7, 11 and 12. In this question, give all probabilities as fractions. (a) One of the six cards is chosen at random. (i) Which number has a probability of being chosen of $\frac{1}{3}$? Answer(a)(i)[1] (ii) What is the probability of choosing a card with a number which is smaller than at least three of the other numbers? Answer(a)(ii) [1] **(b)** Two of the six cards are chosen at random, without replacement. Find the probability that (i) they are both numbered 1, Answer(b)(i) [2] (ii) the total of the two numbers is 18,

Answer(b)(ii) [3]

© UCLES 2009

•	(iii) the first number is not a 1 and the secon	nd number is a	a 1.	
	Ar	nswer(b)(iii)		[2]
(c)	Cards are chosen, without replacement, until	l a card numbe	ered 1 is chosen.	
	Find the probability that this happens before	the third card	l is chosen.	
		<i>(</i>)		503
	Ar	nswer(c)		[2]
(d)	A seventh card is added to the six cards show	wn in the diag	ram	
(**)	The mean value of the seven numbers on the		Turii.	
	Find the number on the seventh card.			
	Ar	nswer(d)		[2]

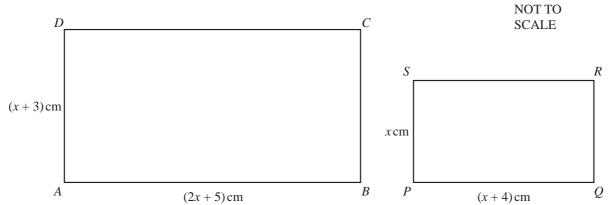
The boundary of a park is in the shape of a triangle ABC. AB = 240 m, BC = 180 m and CA = 140 m.

In part (a), show clearly all your construction arcs.

(a) (i) Using a scale of 1 centimetre to represent 20 metres, **construct** an **accurate** scale drawing of triangle *ABC*. The line *AB* has already been drawn for you.

A B

[2]


- (ii) Using a straight edge and compasses only, **construct** the bisector of angle *ACB*.
 - Label the point D, where this bisector meets AB. [2]
- (iii) Using a straight edge and compasses only, construct the locus of points, inside the triangle, which are equidistant from A and from D.
- (iv) Flowers are planted in the park so that they are nearer to AC than to BC and nearer to D than to A.
 - Shade the region inside your triangle which shows where the flowers are planted. [1]

© UCLES 2009 0580/04/O/N/09

You	n part (b), use trigonometry. You must show your working and must NOT use any measurements from your construction in part (a).				
(b)	(i)	Show clearly that angle ACB is 96.4°.			
		Answer(b)(i)			
		[3]			
	(ii)	Calculate the area of the park.			
	(iii)	Answer(b)(ii) m² [2] Use the sine rule to calculate angle ABC.			
		Answer(b)(iii) Angle ABC = [3]			

For Examiner's Use

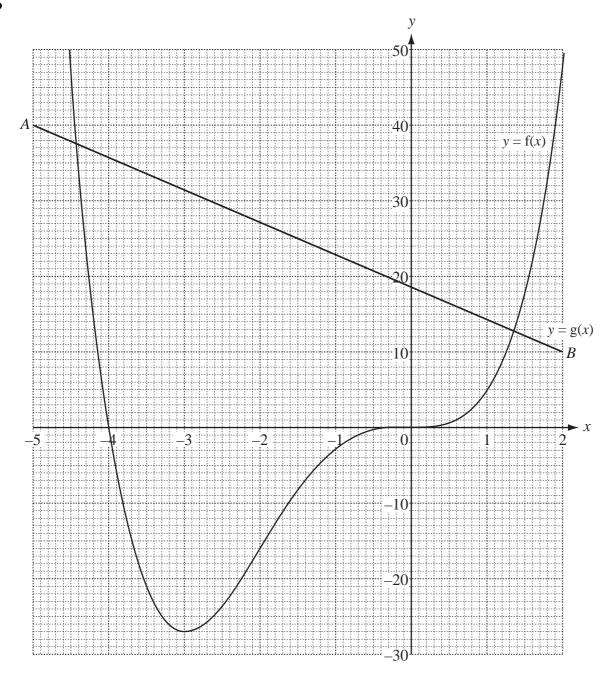
[3]

The diagram shows two rectangles ABCD and PQRS.

$$AB = (2x + 5)$$
 cm, $AD = (x + 3)$ cm, $PQ = (x + 4)$ cm and $PS = x$ cm.

- (a) For one value of x, the area of rectangle ABCD is $59 \,\mathrm{cm}^2$ more than the area of rectangle PQRS.
 - (i) Show that $x^2 + 7x 44 = 0$. Answer(a)(i)

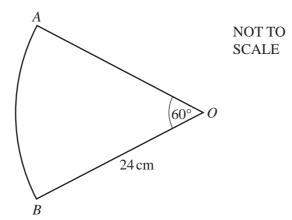
(ii) Factorise $x^2 + 7x + 44$.


(iii) Solve the equation $x^2 + 7x - 44 = 0$.

(iv) Calculate the size of angle *DBA*.

$$Answer(a)$$
(iv) Angle $DBA =$ [2]

(b)	For	a different value of x , the rectangles $ABCD$ and $PQRS$ are similar.	
	(i)	Show that this value of x satisfies the equation $x^2 - 2x - 12 = 0$.	
		Answer(b)(i)	
			[3]
	(ii)	Solve the equation $x^2 - 2x - 12 = 0$, giving your answers correct to 2 decimal places.	
		Answer(b)(ii) x =	[4]
((iii)	Calculate the perimeter of the rectangle <i>PQRS</i> .	
		Answer(b)(iii) cm	[1]


The graphs of y = f(x) and y = g(x) are shown above.

1	(a)	Find	the	val	lue	αf
V.	а	, i iiiu	uic	v a	luc	$\mathbf{v}_{\mathbf{I}}$

(i) f(2),

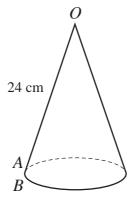
(ii) g(0).

(b) Use the graphs to solve	
(i) the equation $f(x) = 20$,	
Answer(b)(i) x =	[2]
(ii) the equation $f(x) = g(x)$,	
Answer(b)(ii) x =	[2]
(iii) the inequality $f(x) < g(x)$.	
Answer(b)(iii)	[1]
(c) Use the points A and B to find the gradient of $y = g(x)$ as an exact fraction.	
Answer(c)	[2]
(d) On the grid, draw the graph of $y = g(x)$ 10.	[2]
(e) (i) Draw the tangent to the graph of $y = f(x)$ at (3, 27).	[1]
(ii) Write down the equation of this tangent.	
Answer(e)(ii)	[1]
(f) A region, R , contains points whose co-ordinates satisfy the inequalities	
$3 \le x \le 2$, $y \le 40$ and $y \ge g(x)$.	
On the grid, draw suitable lines and label this region R .	[2]

For Examiner's Use

(a) The sector of a circle, centre O, radius 24 cm, has angle $AOB = 60^{\circ}$.

Calculate


(i) the length of the arc AB,

Answer(a)(i) cm [2]

(ii) the area of the sector *OAB*.

Answer(a)(ii) _____ cm² [2]

(b) The points A and B of the sector are joined together to make a hollow cone as shown in the diagram. The arc AB of the sector becomes the circumference of the base of the cone.

NOT TO SCALE

~ .		
Cal	011	lata

(i) the radius of the base of the cone,

For Examiner's Use

(ii) the height of the cone,

(iii) the volume of the cone. [The volume, V, of a cone of radius r and height h is $V = \frac{1}{3}\pi r^2 h$.]

(c) A different cone, with radius x and height y, has a volume W.

Find, in terms of W, the volume of

(i) a similar cone, with both radius and height 3 times larger,

$$Answer(c)(i)$$
 [1]

(ii) a cone of radius 2x and height y.

$$Answer(c)(ii) \qquad [1]$$

8 Fifty students are timed when running one kilometre.

The results are shown in the table.

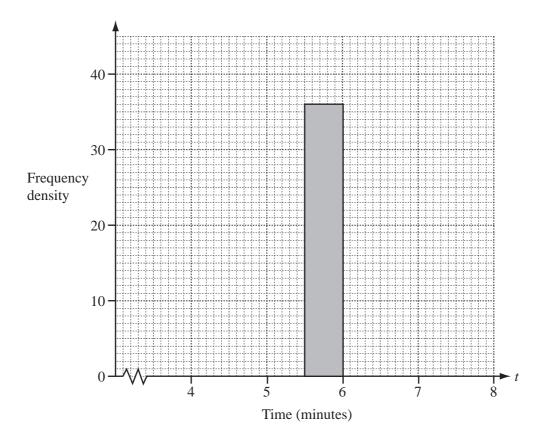
For Examiner's Use

Time (t minutes)	$4.0 < t \le 4.5$	$4.5 < t \le 5.0$	$5.0 < t \le 5.5$	$5.5 < t \le 6.0$	$6.0 < t \le 6.5$	$6.5 < t \le 7.0$
Frequency	2	7	8	18	10	5

Answer(a)	min	[1]

(b) Calculate an estimate of the mean time.

(c) A new frequency table is made from the results shown in the table above.


Time (t minutes)	$4.0 < t \le 5.5$	$5.5 < t \le 6.0$	$6.0 < t \le 7.0$
Frequency		18	

(i) Complete the table by filling in the two empty boxes.

[1]

(ii) On the grid below, complete an accurate histogram to show the information in this new table.

For Examiner's Use

[3]

(iii) Find the number of students represented by 1 cm² on the histogram.

Answer(c)(iii) [1]

9 (a) Solve the equation
$$\frac{m-3}{4} + \frac{m+4}{3} = 7.$$

$$Answer(a) m =$$
 [4]

(b) (i)
$$y = \frac{3}{x-1} + \frac{2}{x+3}$$

Find the value of y when x = 5.

(ii) Write $\frac{3}{x-1} = \frac{2}{x+3}$ as a single fraction.

(iii) Solve the equation
$$\frac{3}{x-1} = \frac{2}{x+3} = \frac{1}{x}$$
.

$$Answer(b)(iii) x =$$
 [3]

$$p = \frac{t}{q-1}$$

Find q in terms of p and t.

$$Answer(c) q = [3]$$

0								Total		For Examiner's Use
Row 1						1	=	1		
Row 2				3	+	5	=	8		
Row 3		7	+	9	+	11	=	27		
Row 4 1	3 +	15	+	17	+	19	=	64		
Row 5										
Row 6										
The rows above show sets of consecutive odd n	umbers	and	the	ir tot	als.					
(a) Complete Row 5 and Row 6.									[2]	
(b) What is the special name given to the number	bers 1,	8, 27	, 64	?						
	Answ	er(b))						[1]	
(c) Write down in terms of n ,										
(i) how many consecutive odd numbers the	here are	e in I	Row	n,						
	Answ	er(c)	(i)						[1]	
(ii) the total of these numbers.										
	Answ	er(c)	(ii)						[1]	
(d) The first number in Row n is given by n^2										
Show that this formula is true for Row 4.										
Answer(d)										

[1]

(e)	The total of Row 3 is 27. This can be calculated by $(3 \times 7) + 2 + 4$.
	The total of Row 4 is 64. This can be calculated by $(4 \times 13) + 2 + 4 + 6$.
	The total of Row 7 is 343. Show how this can be calculated in the same way.
	Answer(e)
	[1]
(f)	The total of the first n even numbers is $n(n + 1)$.
	Write down a formula for the total of the first $(n-1)$ even numbers.
	Answer(f) [1]
(g)	Use the results of parts (d), (e) and (f) to show clearly that the total of the numbers in Row n gives your answer to part (c)(ii).
	Answer(g)
	[2]

© UCLES 2009 0580/04/O/N/09

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.